Rhodium-Catalyzed Asymmetric 1,4-Addition to 1-Alkenylphosphonates

Tamio Hayashi,* Taichi Senda, Yoshiaki Takaya, and Masamichi Ogasawara

Department of Chemistry, Graduate School of Science Kyoto University, Sakyo, Kyoto 606-8502, Japan

Received September 3, 1999

Optically active phosphonic acid derivatives are important compounds because of their synthetic utility as chiral building blocks¹ as well as their potential biological activity.² Asymmetric 1,4-addition of organometallic reagents to α,β -unsaturated compounds is a powerful tool for carbon-carbon bond formation with simultaneous introduction of a new stereogenic carbon center at the β -position. Although many papers have appeared on the topic of catalytic asymmetric 1,4-addition to α,β -unsaturated carbonyl compounds with high enantioselectivity,3 to our best knowledge the enantioselective reaction to α . β -unsaturated phosphonates has not been reported yet,^{4,5} probably due to their low reactivity toward the 1,4-addition. Recently, we found asymmetric 1,4addition of aryl- and alkenylboronic acids to α,β -unsaturated ketones which proceeds with high enantioselectivity under catalysis by a chiral phosphine-rhodium complex.⁶ Here we report that the rhodium-catalyzed asymmetric 1,4-addition is successfully applied to α,β -unsaturated phosphonates⁷ by use of triarylcyclotriboroxanes as arylating reagents in place of arylboronic acids.

We prepared geometrically pure diethyl (*E*)- and (*Z*)-1propenylphosphonates (**1a**) by the palladium-catalyzed crosscoupling type reaction⁸ of diethyl phosphite with (*E*)- and (*Z*)-1-propenyl bromide, respectively. Treatment of the α,β -unsaturated phosphonate with phenylboronic acid under the conditions previously reported⁶ for α,β -unsaturated ketones gave a poor yield of diethyl 2-phenylpropylphosphonate (**3am**, Scheme 1). For example, the reaction of (*E*)-**1a** with phenylboronic acid in the presence of 3 mol % of the catalyst generated from Rh(acac)-(C₂H₄)₂ and (*S*)-binap in dioxane/H₂O (10/1) at 100 °C for 5 h gave **3am** (84% ee) only in 44% yield (entry 1 in Table 1). It was found that the rhodium catalyst loses its catalytic activity within 30 min under the conditions described above and that the presence of a large amount of water as a cosolvent causes the

(2) For examples of asymmetric synthesis of biologically active phosphonates, see: (a) Blazis, V. J.; Koeller, K. J.; Spilling, C. D. J. Org. Chem. **1995**, 60, 931. (b) Arai, T.; Bougauchi, M.; Sasai, H.; Shibasaki, M. J. Org. Chem. **1996**, 61, 2926 and references therein. (c) Nagaoka, Y.; Tomioka, K. J. Org. Chem. **1998**, 63, 6428.

(3) For reviews, see: (a) Schmalz, H.-G. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 4, Chapter 1.5. (b) Rossiter, B. E.; Swingle, N. M. *Chem. Rev.* **1992**, *92*, 771. (c) Noyori, R. *Asymmetric Catalysis in Organic Synthesis*; John Wiley and Sons: New York, 1994; pp 207–212. (d) Nógrádi, M. *Stereoselective Synthesis*; VCH Publishers: New York, 1995; pp 213–224. (e) Seyden-Penne, J. *Chiral Auxiliaries and Ligands in Asymmetric Synthesis*; John Wiley and Sons: New York, 1995.

 (4) For a review on 1,4-addition reactions, see: Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis; Pergamon Press: Oxford, 1992.
 (5) For an example of nonasymmetric addition of alkyl- and vinylcopper

(s) For an example of honasymmetric addition of any f and viny copper reagents to α, β -unsaturated phosphonates, see: Nicotra, F.; Panza, L.; Russo, G. J. Chem. Soc., Chem. Commun. **1984**, 5.

(6) (a) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J.
 Am. Chem. Soc. 1998, 120, 5579. (b) Takaya, Y.; Ogasawara, M.; Hayashi,
 T. Tetrahedron Lett. 1998, 39, 8479.

(7) For a review on vinylphosphonates in organic synthesis, see: Minami, T.; Motoyoshiya, J. *Synthesis* **1992**, 333.

(8) Hirao, T.; Masunaga, T.; Yamada, N.; Ohshiro, Y.; Agawa, T. Bull. Chem. Soc. Jpn. 1982, 55, 909. Scheme 1

Table 1. Asymmetric 1,4-Addition of Arylboroxines **2** to 1-Alkenylphosphonates **1** Catalyzed by (S)-binap-Rhodium $(I)^a$

	phosphonate		yield ^b (%)		[α] ²⁰ D
entry	1	(ArBO) ₃ 2	of 3	$\% ee^c$	$(c \text{ in CHCl}_3)$
1^d	(E)- 1a	PhB(OH) ₂	44 (3am)	84 (S)	
2	(E)- 1a	2m	94 (3am)	96 (S)	-19(0.93)
3^e	(E)- 1a	2m	5 (3am)		
4^d	(E)- 1a	p-TolB(OH) ₂	43 (3an)	86	
5	(E)- 1a	2n	84 (3an)	95	-23(0.98)
6 ^f	(E)- 1a	2n	88 (3an)	96	
7	(E)- 1a	20	64 (3ao)	96	-25(0.86)
8	(E)- 1a	2p	61 (3ap)	96	-24(0.72)
9	(E)- 1a	2q	81 (3aq)	95	-21(0.92)
10	(E)- 1a	2r	89 (3ar)	89	-21(1.01)
11^{f}	(E)- 1a	2r	92 (3ar)	90	
12	(E)- 1b	2m	96 (3bm)	94	-25(1.07)
13	(<i>E</i>)-1c	2m	95 (3cm)	91 (S)	-16(1.10)
14^{f}	(E)-1c	2m	99 (3cm)	94 (S)	
15	(E)-1d	2m	39 (3dm)	99	-10(1.03)
16	(Z)-1a	2m	96 (3am)	89 (R)	+18(1.13)
17^{g}	(Z)-1a	2m	23 (3am)	97 (R)	
18 ^f	(Z)- 1a	2m	98 (3am)	92 (<i>R</i>)	

^{*a*} The reaction was carried out with phosphonate **1** (0.20 mmol), arylboroxine **2** (0.67 mmol), and H₂O (2.0 mmol) in dioxane (0.8~1.0 mL) at 100 °C for 3 h in the presence of 3 mol % of the catalyst generated from Rh(acac)(C₂H₄)₂ and (*S*)-binap unless otherwise noted. ^{*b*} Isolated yield by silica gel chromatography. ^{*c*} Determined by HPLC analysis with chiral stationary phase columns: Daicel Chiralcel AD (**3am**, **3an**, **3ao**, **3ap**, **3aq**, **3ar**, **3bm**) (eluent, hexane/2-propanol = 98/2), OD-H (**3cm**) (eluent, hexane/2-propanol = 90/10), and OJ (**3dm**) (eluent, hexane/2-propanol = 98/2). ^{*d*} Reaction of ArB(OH)₂ in dioxane/H₂O (10/1). ^{*e*} Reaction without addition of H₂O. ^{*f*} As a chiral ligand, (*S*)-*u*-binap was used in place of (*S*)-binap. ^{*s*} Reaction was stopped at the reaction period of 3 min.

catalyst deactivation. The asymmetric 1,4-addition was greatly improved by carrying out the reaction with triphenylcyclotriboroxane (phenylboroxine, (PhBO)₃)⁹ (**2m**) in place of phenylboronic acid (entry 2). Thus, the reaction of (*E*)-**1a** with phenylboroxine (**2m**) and 1 equiv (to boron) of water in dioxane at 100 °C for 3 h gave 94% yield of **3am** ($[\alpha]^{20}_{D} - 19 (c 0.93,$ chloroform)), whose enantiomeric purity was determined to be 96% ee by HPLC analysis with a chiral stationary phase column (entry 2). The absolute configuration of (–)-**3am** was assigned to be *S* by correlation with (+)-(*R*)-1,3-diphenyl-1-butene (**4**)¹⁰

10.1021/ja993184
u CCC: \$18.00 $\,$ © 1999 American Chemical Society Published on Web
 11/24/1999

⁽¹⁾ For a review on the use of phosphonates for alkene synthesis, see: Kelly, S. E. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 1, Chapter 3.1.

⁽⁹⁾ Arylboroxines are readily obtained by dehydration of arylboronic acids by azeotropic removal of water from their xylene solution or heating at 300 °C in vacuo. For a pertinent review, see: Lappert, M. F. *Chem. Rev.* **1956**, *56*, 959.

(vide infra). The addition of 1 equiv of water is essential for the high yield,¹¹ almost no reaction taking place in the absence of water (entry 3).

Under similar reaction conditions, diethyl (E)-1-propenylphosphonate ((E)-1a) underwent asymmetric arylation with some other arylboroxines (2n-2r) to give the corresponding diethyl 2-arylpropylphosphonates (3an-3ar) in good yields with high enantioselectivity (entries 5, and 7–10). Here, again, the yield of 3anwas much lower in the reaction with *p*-tolylboronic acid than with p-tolylboroxine (entries 4 and 5). The asymmetric phenylation was also successful for dimethyl and diphenyl esters of (E)-1propenylphosphonate ((E)-1b,c) (entries 12 and 13). The enantioselectivities and chemical yields were slightly higher in the reaction catalyzed by rhodium complex coordinated with unsymmetrically substituted binap ligand, (S)-u-binap,12 which has diphenylphosphino and bis(3,5-dimethyl-4-methoxyphenyl)phosphino groups at the 2 and 2' positions on the 1,1'-binaphthyl skeleton (entries 6, 11, and 14).

The rhodium-catalyzed asymmetric phenylation of the Z isomer of diethyl 1-propenylphosphonate (Z)-1a with phenylboroxine 2m for 3 h gave the R isomer of **3am** with 89% ee (entry 16). The observation of the opposite absolute configuration of 3am for (E)-1a and (Z)-1a indicates that the dialkoxyphosphinyl moiety on the 1-alkenylphosphonate plays a key role in the enantioface selection (Scheme 2). The (S)-binap-rhodium catalyst recognizes the enantioface of 1-propenylphosphonate by the steric bulkiness of the phosphinyl group; both (E)-1a and (Z)-1a phenylated on the rhodium from the 1si face irrespective of the E,Z geometry of the 1-propenyl moiety.¹³ The Z isomer (Z)-1a was found to undergo slow isomerization into the E isomer under these reactions conditions, resulting in the loss of enantioselectivity. This was demonstrated by stopping the reaction at the reaction period of 3 min, which gave 3am of 97% ee (entry 17).

The optically active alkylphosphonates 3, containing the stereogenic carbon center at the β -position, can be used as chiral building blocks for the synthesis of optically active alkenes by the Horner-Emmons type reaction (Scheme 3). The olefination of carbonyl compounds with diphenyl phosphonates proceeded without loss of enantiomeric purity. Unfortunately, the elimination forming alkenes did not take place from the β -hydroxyphospho-

^a The binaphthylene moiety in (S)-binap is omitted for clarity.

Scheme 3

$$(S)-3am \frac{1) \text{PCI}_{5}}{2) \text{PhOH, Et}_{3}N} \underbrace{\begin{array}{c} \text{Ph} & \text{O} \\ P(\text{OPh})_{2} & \text{PhEUL, THF} \end{array}}_{(-)-(S)-3cm} \underbrace{\begin{array}{c} \text{Ph} & \text{R} \\ 1) \text{F-BULI, THF} & \text{Ph} \\ 2) \text{PhCOR} \end{array}}_{(+)-(R)-4a} (R = H) \\ (-)-(R)-4b (R = Ph) \\ (-)-(R)-4b (R = Ph) \end{array}}$$

nate intermediates in the reaction of diethyl phosphonates,14 but diethyl esters were readily converted into diphenyl esters by way of dichlorides.¹⁵ For example, the ester substitution of (-)-3am (91% ee) from ethyl to phenyl followed by treatment of the resulting diphenyl ester (-)-3cm with tert-butyllithium and benzaldehyde gave (+)-(R)-(E)-1,3-diphenyl-1-butene $(4a)^{10}$ of 92% ee,¹⁶ together with a minor amount of (Z)-isomer (E/Z =82/18), indicating that the absolute configuration of 3am and 3cm is (-)-(S). Similarly, the reaction of (-)-**3cm** with benzophenone gave (-)-(R)-1,1,3-triphenyl-1-butene $(4b)^{17}$ of 91% ee.¹⁶

To summarize, we have realized, for the first time, the catalytic asymmetric 1,4-addition to 1-alkenylphosphonates, forming 2-arylalkylphosphonates in high yields with high enantioselectivity, by use of a new catalytic system consisting of a chiral phosphine-rhodium catalyst and arylboroxines as arylating reagents.

Acknowledgment. This work was supported by "Research for the Future" Program, the Japan Society for the Promotion of Science, and a Grant-in-Aid for Scientific Research, the Ministry of Education, Japan.

Supporting Information Available: Experimental procedures and spectroscopic and analytical data for the substrates and products (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA993184U

analysis with CP-Chirasil-dex CB (25 m). (17) $[\alpha]^{20}_{\rm D}$ -73 (c 0.52, chloroform). The absolute configuration was assigned by the correlation with the starting (-)-(S)-3cm.

⁽¹⁰⁾ Hayashi, T.; Konishi, M.; Fukushima, M.; Mise, T.; Kagotani, M.; (11) Interestingly, the rhodium-catalyzed reaction of (*E*)-**1a** with phenyl-

boronic acid in nonaqueous dioxane, namely, in the absence of water, resulted in a lower yield (67%) of **3am** (88% ee), though a boronic acid is known to be in equilibrium with a boroxine and water (ref 9). Methanol can also be used in place of water as a protic additive to phenylboroxine (85% yield of 3am), while the reaction with dimethyl ester (PhB(OMe)2) did not take place (<2% yield).

⁽¹²⁾ The new chiral bisphosphine (S)-u-binap was prepared starting from (S)-binaphthol ditriflate by a sequence of reactions consisting of palladiumcatalyzed monophosphinylation with bis[(3,5-dimethyl-4-methoxy)phenyl]phosphine oxide, reduction of the phosphine oxide with trichlorosilane and triethylamine, and nickel-catalyzed cross-coupling of the remaining triflate with diphenylphosphine in 74% overall yield: $[\alpha]^{20}_{D} - 103$ (*c* 1.08, chloroform)

⁽¹³⁾ For the highly skewed structure of transition metal complexes coordinated with a binap ligand, see: Ozawa, F.; Kubo, A.; Matsumoto, Y.; Hayashi, T. Organometallics 1993, 12, 4188 and references therein.

⁽¹⁴⁾ Corey, E. J.; Kwiatkowski, G. T. J. Am. Chem. Soc. 1966, 88, 5654.
(15) Ando, K. Tetrahedron Lett. 1995, 36, 4105.
(16) The enantiomeric purities of (E)-4a and -4b were determined by GLC